Home
Class 12
MATHS
f(x)={(ax+2, x<=1),(3, x>1):} , If li...

`f(x)={(ax+2, x<=1),(3, x>1):} `, If `lim_(x rarr1)f(x)` exist then value of `a` is : `

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={(ax+2, x 1):} , If lim_(x rarr1)f(x) exist then value of a is :

Letf(x)={x+lambda,x =1 if lim_(x rarr1)f(x) exist,then find value of lambda

If lim_(x rarr a)((f(x))/(g(x))) exists,then

f(x)=x,x 0 then find lim_(x rarr0)f(x) if exists

f(x)=(3x^(2)+ax+a+1)/(x^(2)+x-2) and lim_(x rarr-2)f(x) exists.Then the value of (a-4) is

if f(x)=3+x,x =1 then lim_(x rarr1)f(x)

lim_(x rarr1)f(x), where f(x)={x^(2)-1,x 1

1.if lim_(x rarr a)f(x) and lim_(x rarr a)g(x) both exist,then lim_(x rarr a){f(x)g(x)} exists.2. If lim_(x rarr a){f(x)g(x)} exists,then both lim_(x rarr a)f(x) and lim_(x rarr a)g(x) exist.Which of the above statements is/are correct?