Home
Class 12
MATHS
Maximum value of a for which range of fu...

Maximum value of a for which range of function `y=log_(2)(x^(2)-4x+a)` is R, is :
(A) 4
(B) 2
(C) -4
(D) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function y=(x+2)/(x^(2)-8x+4)

Range of the function f(x)=log_(e)sqrt(4-x^(2)) is

Range of the function f(x)=log_(2)(x^(2)-4x+12) is a subset of

Find the domain and range of the function y=log_(e)(3x^(2)-4x+5) .

The range of the function f(x) = log_(3) (5+4x - x^(2)) , is

The range of the function f(x)=(x^2-x)/(x^2+2x) is R (b) R-[1] (c) R={-1/2,1} (d) none of these

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

The range of a function f(x)=tan^(-1){log_(5//4)(5x^(2)-8x+4)} is

Find the range of the function f(x)=log_(2)(4^(x^(2))+4^((x-1)^(2)))

The range of the function f(x)=log_(3)((x^(2)-5x+6)/(x^(2)-5x+4)) is