Home
Class 12
MATHS
int(-2)^(0)(|sin x|)/([(x)/(pi)]+(1)/(2)...

`int_(-2)^(0)(|sin x|)/([(x)/(pi)]+(1)/(2))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2)(|sin x|)/([(x)/(pi)]+(1)/(2))dx

int_(0)^( pi/2)(sin x)*dx

If [x] denotes the integral part of x and a=int_(-1)^0 (sin^2x)/([x/pi]+1/2)dx, b=int_0^1 (sin^2x)/([x/pi]+1/2)d (x-[x]) , then (A) a=b (B) a=-b (C) a=2b (D) none of these

int_(0)^(1)(tan^(-1)x)/(x)dx is equals to int_(0)^((pi)/(2))(sin x)/(x)dx(b)int_(0)^((pi)/(2))(x)/(sin x)dx(1)/(2)int_(0)^((pi)/(2))(sin x)/(x)dx(d)(1)/(2)int_(0)^((pi)/(2))(x)/(sin x)dx

If int_(0)^(1)(sin x)/(1+x)dx=K the the value of int_(4 pi-2)^(4 pi)(sin((x)/(2)))/(4 pi+2-x)dx equals

int_(0)^( pi)sin(2*x)dx

underset is If int_(0)^( pi)xf(sin x)dx=A int_(0)^((pi)/(2))f(sin x)dx, then A

int_(0)^( pi/2)(1+sin x)^(1/2)dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =