Home
Class 12
MATHS
int(0)^(2)(|sin x|)/([(x)/(pi)]+(1)/(2))...

`int_(0)^(2)(|sin x|)/([(x)/(pi)]+(1)/(2))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-2)^(0)(|sin x|)/([(x)/(pi)]+(1)/(2))dx

int_(0)^( pi/2)(sin x)*dx

int_(0)^(1)(tan^(-1)x)/(x)dx is equals to int_(0)^((pi)/(2))(sin x)/(x)dx(b)int_(0)^((pi)/(2))(x)/(sin x)dx(1)/(2)int_(0)^((pi)/(2))(sin x)/(x)dx(d)(1)/(2)int_(0)^((pi)/(2))(x)/(sin x)dx

int_(0)^( pi/2)(1+sin x)^(1/2)dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^( pi)sin(2*x)dx

int_ (0) ^ (2 pi) | sin x | dx

int_(0)^( pi/2)sqrt(1-sin x)dx

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^(pi) [2sin x]dx=