Home
Class 11
MATHS
In a triangle ABC, right angled at A ,th...

In a triangle `ABC`, right angled at `A` ,the altitude through `A` and internal bisector of `/_A` have lengths 3 and 4 respectively. Find the length of median through A. Given that `tan(A+B)=(tan A+tan B)/(1-tan A tan B),tan(A-B)=(tan A-tan B)/(1+tan A tan B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For all values of A and Btan(A+B)=(tan A+tan B)/(1-tan A tan B) and tan(A-B)=(tan A-tan B)/(1+tan A tan B)

if in triangle ABC right angled at C then tan A+tan B

Prove that (tan (AB) + tan B) / (1-tan (AB) tan B) = tan A

Prove that tan(A+B+C)=(tan A+tan B+tan C-tan A tan B tan C)/(1-tan A tan B-tan B tan C-tan C tan A)

(tan A+tan B-tan C+tan A tan B tan C)/(1-tan A tan B+tan B tan C+tan C tan A)

(tan A + tan B) / (tan (A + B)) + (tan A-tan B) / (tan (AB)) =

Prove that tan(A-B)=(tan A-tan B)/(1+tan A*tan B) , if A=60° & B=45°.

In a triangle ABC, right angled at C, find the value of tan A + tan B in terms of the sides a,b,c.

(tan A + tan B) / (tan A-tan B) = (sin (A + B)) / (sin (AB))