Home
Class 11
MATHS
If int (dx)/(x-x^(3))=A log |(x^(2))/(1-...

If `int (dx)/(x-x^(3))=A log |(x^(2))/(1-x^(2))|+c` then A=
(A) `2`
(B) `1/2`
(C) `2/3`
(D) `1/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(ln x)/(x^(3))dx=A(ln x)/(x^(2))+(B)/(x^(2))+c

If int(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C then

If int(dx)/(x^(4)+x^(2))=(A)/(x^(2))+(B)/(x)+ln|(x)/(x+1)|+C then

int_(1)^(3)(log x)/((x+1)^(2))dx

int_(1)^(3)(log x)/((x+1)^(2))dx

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

(b) int_(1)^(3)(cos(log x^(2)))/(x)dx

If int(5x+2)/(x^(2)-3x+2)dx=log[(x-2)^(m).(x-1)^(n)]+c then (m,n)-=