Home
Class 11
MATHS
.If alpha,beta,gamma are roots of x^(3)-...

.If `alpha,beta,gamma` are roots of `x^(3)-x^(2)-1=0` then the value of `((1+alpha))/((1-alpha))+((1+beta))/((1-beta))+((1+gamma))/((1-gamma))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are roots of equation x^(3)-x-1=0 then the value of sum(1+alpha)/(1-alpha) is :

If alpha,beta and gamma are the roots of x^(3)-x^(2)-1=0, then value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is

If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0 , then the value of ((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is __________.

If (alpha, beta, gamma) are roots of equation x^(3)-3x^(2)+1=0 then the value of [((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is k then |k|=

If alpha, beta, gamma are roots of x^(3)-2x^(2)+7x-1=0 then the value of (alpha+beta-gamma) (beta+gamma-alpha) (alpha+gamma-beta)

If alpha,beta,gamma, are the roots of 2x^(3)-x+1=0 then the value of alpha^(3)+beta^(3)+gamma^(3) is

If alpha,beta,gamma are the roots of the equation x^(3)+2x^(2)+3x+3=0, then the value of ((alpha)/(alpha+1))^(3)+((beta)/(beta+1))^(3)+((gamma)/(gamma+1))^(3) is

if alpha,beta,gamma are the roots of the equation x^(3)-x-1=0 then (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is

if alpha,beta,gamma are the roots of the equation x^(3)-x-1=0 then (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is

if alpha,beta,gamma are the roots of equation x^(3)-x-1=0, then (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma)