Home
Class 12
MATHS
sum(n=1)^(oo)tan^(-1)((8)/(4n^(2)-4n+1))...

`sum_(n=1)^(oo)tan^(-1)((8)/(4n^(2)-4n+1))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum sum_(n=1)^(oo)tan^(-1)((3)/(n^(2)+n-1)) is equal to

sum_(n=1)^(oo)(tan^(-1)((4n)/(n^(4)-2n^(2)+2))) is equal to ( A) tan^(-1)(2)+tan^(-1)(3)(B)4tan^(-1)(1)(C)(pi)/(2)(D)sec^(-1)(-sqrt(2))

The value of the lim_(n rarr oo)tan{sum_(r=1)^(n)tan^(-1)((1)/(2r^(2)))}_( is equal to )

sum_(n=1)^(prop)tan^(-1)((4n)/(n^(4)+5))=

The sum sum_(n=1)^(60)tan^(-1)((2n)/(n^(4)-n^(2)+1)) equals tan^(-1)K, where K equal-

lim_(x to oo ) tan { sum_(r=1)^(n) tan^(-1) ((1)/( 1 +r +r^2))} is equal to ________.

The sum of the series sum_(n=1)^oo(n^2+6n+10)/((2n+1)!) is equal to

The value of sum_(n=3)^(oo)(1)/(n^(5) - 5n^(3) +4 n) is equal to -

The value of sum_(n=1)^(oo)(1)/(2n(2n+1)) is equal to