Home
Class 12
MATHS
f:R rarr R,f(x)=tan^(-1)(2^(x))+kis an o...

`f:R rarr R,f(x)=tan^(-1)(2^(x))+k`is an odd function, then k is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

f:R rarr R , f(x)=tan^(-1)(2^x) + k is an odd function, then k= (A) -pi/4 (B) (pi)/(4) (C) -(pi)/(2) (D) (pi)/(2)

Let f:R rarr [0, (pi)/(2)) be a function defined by f(x)=tan^(-1)(x^(2)+x+a) . If f is onto, then a is equal to

If the function f:R rarrA defined as f(x)=tan^(-1)((2x^(3))/(1+x^(6))) is a surjective function, then the set A is equal to

The function f:R rarr R, f(x)=x^(2) is

If the function f:R rarr A defined as f(x)=sin^(-1)((x)/(1+x^(2))) is a surjective function, then the set A is

If f:[-4,4] rarr R where f(x)=x^(3)+tan x+[(x^(2)+1)/(lambda)] is an odd function then the range of values of lambda is :- (where [.] denotes greatest integer function)

If function f : R rarr R^(+), f(x) = 2^(x) , then f^(-1) (x) will be equal to

If f(x)=(1)/(x^(2)+x+1), then the function f:R rarr R is

If F:R rarr R given by f(x)=x^(3)+5 is an invertible function,than f^(-1)(x) is

If the function f:R rarr R be such that f(x)=sin(tan^(-1)x) then inverse of the function f(x) is