Home
Class 12
MATHS
cos^(-1)((3)/(5))+cos^(-1)((4)/(5))=(pi)...

`cos^(-1)((3)/(5))+cos^(-1)((4)/(5))=(pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)((3)/(5))+cos^(-1)((12)/(13))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that sin^(-1)((4)/(5))+tan^(-1)((5)/(12))+cos^(-1)((63)/(65))=(pi)/(2)

If sin^(-1)((x)/(5))+cos ec^(-1)((5)/(4))=(pi)/(2) then the value of x is: (1)1(2)3(3)4(4)5

cos^(2)((3 pi)/(5))+cos^(2)((4 pi)/(5))=

If |z-25i|le15 , then |maximum arg(z) - minimum arg(z)| equals (A) (pi)/(2)+cos^(-1)((3)/(5)) (B) sin^(-1)((3)/(5))-cos^(-1)((3)/(5)) (C) 2cos^(-1)((4)/(5)) (D) 2cos^(-1)((1)/(5))

The eccentric angle of a point on the ellipse (x^(2))/(4)+(y^(2))/(3)=1 at a distance of 5/4 units from the focus on the positive x-axis is cos^(-1)((3)/(4)) (b) pi-cos^(-1)((3)/(4))pi+cos^(-1)((3)/(4))(d) none of these

2tan^(-1)(-2) is equal to (a)-cos t^(-1)((-3)/(5))(b)-pi+(cos^(-1)3)/(5)(c)-(pi)/(2)+tan^(-1)(-(3)/(4)) (d) -pi cot^(-1)(-(3)/(4))

cos^(-1)(cos((5 pi)/(4)))

Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi