Home
Class 11
MATHS
x=2+t^(3),y=3t^(2) ,then the value (dy)...

`x=2+t^(3),y=3t^(2)` ,then the value ` (dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan x = (2t)/(1 -t^(2)) " and sin y" = (2t)/(1 + t^(2)) , then the value of (dy)/(dx) is

If x = 2t^3 and y = 3t^2 , then value of (dy)/(dx) is

if x=2+t^(3),y=3t^(2)" ,then the value of n for which "(((d^(2)y)/(dx^(2))))/((dy)/(dx))^(n) is constant is

If t(1+x^(2))=x and x^(2)+t^(2)=y, then at x=2 the value of (dy)/(dx) is equal to

A function is reprersented parametrically by the equations x=(1+t)/(t^(3));y=(3)/(2t^(2))+(2)/(t). Then the value of |(dy)/(dx)-x((dy)/(dx))

Let x=2(t+(1)/(t)) and y=2(t-(1)/(t)),t!=0. Then,the value of (dy)/(dx) at t=2 is

If x=cos t(3-2cos^(2)t) and y=sin t(3-2s epsilon^(2)t) find the value of (dy)/(dx) at t=(pi)/(4)

If x=t-1/t, and y=t+1/t," then the value of "(dy)/(dx)" at "t=2 is