Home
Class 12
MATHS
if x=2+t^(3),y=3t^(2)" ,then the value ...

`if x=2+t^(3),y=3t^(2)" ,then the value of n for which "(((d^(2)y)/(dx^(2))))/((dy)/(dx))^(n) is constant is `

Promotional Banner

Similar Questions

Explore conceptually related problems

x=2+t^(3),y=3t^(2) ,then the value (dy)/(dx)

If x=sin t and y=sin3t, then the value of k for which (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+ky=0 is

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

If x=a(sin t-t cos t),y=a sin t then find the value of (d^(2)y)/(dx^(2))

If x = 2t^3 and y = 3t^2 , then value of (dy)/(dx) is

Find degree and order x(d^(2)y)/(dx^(2))+((dy)/(dx))^(5)-y(dy)/(dx)=3

(The value of (d^(2)y)/(dx^(2)) is) (i) if x=t^2,y=t^3.

If cos^(-1)((y)/(b))=log((x)/(n))^(n) Find the value of x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+n^(2)y