Home
Class 11
MATHS
Let f(x)=7Tan^(8)x+7Tan^(6)x-4tan^(5)x-4...

Let `f(x)=7Tan^(8)x+7Tan^(6)x-4tan^(5)x-4tan^(3)x` and `int f(x)dx=g(x)` where `g(0)=0` then the value of `g((pi)/(4))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=2x+tan x and g(x) is the inverse of f(x) then value of g'((pi)/(2)+1) is

If f(x)=(2tan x)/(1+tan^(2)x) then value of f((pi)/(4)) will be

Let f(x)=7tan^(8)x+7tan^(6)x-3tan^(4)x-3tan^(2)x for all x in(-(pi)/(2),(pi)/(2))* Then the correct expression (s) is (are) (a) int_(0)^((pi)/(4))xf(x)dx=(1)/(12) (b) int_(0)^((pi)/(4))f(x)dx=0( c) int_(0)^((1)/(4))xf(x)=(1)/(6)(d)int_(0)^((pi)/(4))f(x)dx=(1)/(12)

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

Let f (x) = 7 tan ^(8) x + 7 tan ^(6) x - 3 tan ^(4) x - 3 tan ^(2) x for all x in (-(pi)/(2), (pi)/(2)). Then the correct expression(s) is (are).

int_(, then )^( If )tan^(5)xdx=A tan^(4)x+B tan^(2)x+g(x)+c

If the integral I=int(tanx)/(5+7tan^(2)x)dx=kln |f(x)|+C (where C is the integration constant) and f(0)=5/7 , then the value of f((pi)/(4)) is equal to

int tan^(4)x dx = A tan^(3) x+ B tan x + f(x) , then

F(x) = 4 tan x-tan^(2)x+tan^(3)x,xnenpi+(pi)/(2)

f(x)=int2e^(x)cos^(2)x(-tan^(2)x+tan x+1)dx and f(x) passes through (pi,0) then (f(0)+f'(0) equals