Home
Class 12
MATHS
sin[(1)/(2)cot^(-1)((2)/(3))]=...

`sin[(1)/(2)cot^(-1)((2)/(3))]`=

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sin((1)/(2)cot^(-1)(-(3)/(4)))

The value of s in((1)/(2)cot^(-1)(-(3)/(4)))+cos((1)/(2)cot^(-1)(-(3)/(4))) is/are equal to- a.1b.(3sqrt(2))/(10)c .sqrt(2)sin((1)/(2)cot^(-1)(-(3)/(4))+cot^(-1)(1))d2sin(pi-tan^(-o1)(1)-(1)/(2)(tan^(-1)(1))/(3))'

Find the value of sin((1)/(2) cot^(-1) (-(3)/(4)))

Evaluate sin(1/2cot^(-1)((-3)/(4))

log_(e)sin^(-1)x^(2)(cot^(-1)x^(2))

The value of 2(cot^(-1))(1)/(2)-(cot^(-1))(4)/(3) is

a=sin^(-1)(-(sqrt(2))/(2))+cos^(-1)(-(1)/(2)) and b=tan^(-1)(-sqrt(3))-cot^(-1)(-(1)/(sqrt(3))) ,then

The sum to infinite terms of the series cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+

If the sum of first 16 terms of the series s=cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+ up to terms is cot^(-1)((1+2^(n))/(2(2^(16)-1))), then find the value of n.

Whet is the value of the following? cot[sin^(-1)(3/5) + cot^(-1)(3/2)]