Home
Class 12
MATHS
int(dx)/(sin^(2)x+Tan^(2)x)=(-1)/(l)cot ...

`int(dx)/(sin^(2)x+Tan^(2)x)=(-1)/(l)cot x-(1)/(k sqrt(2))Tan^(-1)((tan x)/(sqrt(2)))+c` then `(k)^l=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(1+cos^(2)x)dx=(1)/(sqrt(2))tan^(-1)((tan x)/(sqrt(2)))+c

int(dx)/(3+sin2x)=(1)/(sqrt(k))Tan^(-1)((3Tan x+1)/(sqrt(8)))+C where k is

int(1)/(sqrt(sec^(2)x+tan^(2)x))dx=

int(tan x)/(tan^(2)x+tan x+1)dx=x-(k)/(sqrt(A))tan^(-1)((k tan x+1)/(sqrt(A)))+C, then the ordered pir of (K,A) is equal to : (A) (2,1)(B)(-2,3)(C)(2,3)(D)(-2,1)

Assertion (A) : int(dx)/(x^(2) + 2x + 3) = (1)/(sqrt(2)) tan^(-1)((x+1)/(sqrt(2))) + c Reason (R) : int(dx)/(x^(2) + a^(2)) = (1)/(a) tan^(-1)((x)/(a)) + c

If inttanx/(1+tanx+tan^(2)x)dx =x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c , then A=

If int (dx)/(5+4 cos x) = k tan^(-1) (m tan ((x)/(2))) + C then :

If int(1)/((x+1)sqrt(x-1))dx=k.tan^(-1)sqrt((x-1)/(2))+c then k =

int(dx)/((1+x^(2))sqrt(tan^(-1)x+4))

int(2x^(2)+a^(2))/(x^(2)(x^(2)+a^(2)))dx=(k)/(x)+(1)/(a)Tan^(-1)((x)/(a))+c then k