Home
Class 12
MATHS
lim(x rarr1)(1)/(|1-x|)=...

`lim_(x rarr1)(1)/(|1-x|)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)((1)/(1-x)-(3)/(1-x^(3))) is equal to

lim_(x rarr1)((1)/(1-x)-(3)/(1-x^(3)))

lim_(x rarr0)((sin x)/(x))^((sin x)/(x-sin x))+lim_(x rarr1)x^((1)/(1-x))

lim_(x rarr1)((1-x)(1-x^(2))............(1-x^(2n)))/({(1-x)(1-x^(2)).........(1-x^(n))}^(2))

lim_(x rarr1)((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)),n in N, equals ^2nP_(n)(b)^(2n)C_(n)(c)(2n)!(d) none of these

lim_(x rarr1)((2)/(1-x^(2))+(1)/(x-1))

Evaluate :lim_(x rarr1)((2)/(1-x^(2))+(1)/(x-1))

lim_(x rarr1)(log x)/(x-1)=

lim_(x rarr1)[sin^(-1)x]=

8. Prove that lim_(x rarr1^(+))((1)/(x-1))!=lim_(x rarr1^(-))((1)/(x-1))