Home
Class 12
MATHS
lim(n->oo) 1/sqrt(n^2)+1/sqrt(n^2+1)+1/s...

`lim_(n->oo) 1/sqrt(n^2)+1/sqrt(n^2+1)+1/sqrt(n^2+2)+.....1/sqrt(n^2+2n)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

The value of lim_(nto oo)(1/(sqrt(n^(2)))+1/(sqrt(n^(2)+1))+…..+1/(sqrt(n^(2)+2n))) is

lim_(nto oo)1/n+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2)+(n-1)n)) is equal to

lim_(nrarroo) {(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+...+(1)/(sqrt(n^(2)-(n-1)^(2)))} is equal to-

The value of lim_(n rarr oo)(1/sqrt(4n^(2)-1)+1/sqrt(4n^(2)-4)+...+1/sqrt(4n^(2)-n^(2))) is -

Find underset( n rarr oo) ("lim") (sqrt( n^(2) + 1)+ sqrt( n ) )/( sqrt( n ^(2) + 1)- sqrt( n ) )

lim_(nrarroo)((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+....+(1)/(sqrt(n^(2)-(n-1)^(2)))) is equal to