Home
Class 9
MATHS
(b^(2))/(sqrt(a^(2)+b^(2)+c))...

(b^(2))/(sqrt(a^(2)+b^(2)+c))

Promotional Banner

Similar Questions

Explore conceptually related problems

(a+sqrt(a^(2)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)))

The value of (a+sqrt((a)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)) is

If (1+i)(1+2i)(1+3i)......(1+ni)=a+ib,then2xx5xx10...(1+n^(2)) is equal to sqrt(a^(2)+b^(2))(b)sqrt(a^(2)-b^(2))(c)a^(2)+b^(2)(d)a^(2)-b^(2)(e)a+b

(sqrt(a^(2)-b^(2))+a)/(sqrt(a^(2)+b^(2))+b)-:(sqrt(a^(2)+b^(2))-b)/(a-sqrt(a^(2)-b^(2)))

If PQ be a chord of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 which subtends right angle at the centre then is distance from the centre is equal to (A) (ab)/(sqrt(a^(2)+b^(2)))(B)sqrt(a^(2)+b^(2))(C)sqrt(ab)(D) depends on slope of chord

If a variable straight line x cos alpha+y sin alpha=p which is a chord of hyperbola (x^(2))/(a^(2))=(y^(2))/(b^(2))=1 (b gt a) subtends a right angle at the centre of the hyperbola, then it always touches a fixed circle whose radius, is (a) (sqrt(a^2+b^2))/(ab) (b) (2ab)/(sqrt(a^2+b^2)) (c) (ab)/(sqrt(b^2-a^2)) (d) (sqrt(a^2+b^2))/(2ab)

If the line segment joining the points P (a,b) and Q(c,d) subtends an angle theta at the origin , then the value of costheta is a) (ab+cd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2))) b) (ab)/(sqrt(a^(2)+b^(2)))+(bd)/(sqrt(c^(2)+d^(2))) c) (ac+bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2))) d) (ac-bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2)))

If theta=3alphaand sintheta=a/(sqrt(a^2+b^2)), the value of the expression acos e calpha-bsecalpha is (a)a/(sqrt(a^2+b^2)) (b) 2sqrt(a^2+b^2) (c) a+b (d) none of these

If theta=3alpha and sintheta=a/(sqrt(a^2+b^2)), the value of the expression acos e calpha-bsecalpha is (a) a/(sqrt(a^2+b^2)) (b) 2sqrt(a^2+b^2) (c) a+b (d) none of these

If theta=3alpha and sintheta=a/(sqrt(a^2+b^2)), the value of the expression acos e calpha-bsecalpha is (a) a/(sqrt(a^2+b^2)) (b) 2sqrt(a^2+b^2) (c) a+b (d) none of these