Home
Class 11
MATHS
Let z1=r1(costheta1+isintheta1) and z2...

Let `z_1=r_1(costheta_1+isintheta_1)` and `z_2=r_2(costheta_2+isintheta_2)` be two complex numbers. Then prove that
`|z_1+z_2|^2=r_1^2+r_2^2+2r_1r_2cos(theta_1-theta_2)`
or
`|z_1+z_2|^2=|z_1|^2+|z_2|^2+2|z_1||z_2|^()_cos(theta_1-theta_2)` `|z_1-z_2|^2=r_1^2+r_2^2-2r_1r_2cos(theta_1-theta_2)` or
`|z_1-z_2|^2=|z_1|^2+|z_2|^2-2|z_1||z_2|^()_cos(theta_1-theta_2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1)=r_(1)(cos theta_(1)+i sin theta_(1)) and z_(2)=r_(2)(cos theta_(2)+i sin theta_(2)) be two complex numbers then prove the following

Prove that |z_1+z_2|^2+|z_1-z_2|^2 =2|z_1|^2+2|z_2|^2 .

z_(1)bar(z)_(2)+bar(z)_(1)z_(2)=2|z_(1)||z_(2)|cos(theta_(1)-theta_(2))

Prove that |1-barz_1z_2|^2-|z_1-z_2|^2=(1-|z_1|^2)(1-|z_2|^2) .

If z_1 and z_2 are two complex numbers, then prove that |z_1 - z_2|^2 le (1+ k)|z_1|^2 +(1+K^(-1) ) |z_2|^2 AA k in R^(+) .

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

For any two complex numbers z_(1) and z_(2), prove that |z_(1)+z_(2)| =|z_(1)|-|z_(2)| and |z_(1)-z_(2)|>=|z_(1)|-|z_(2)|