Home
Class 12
MATHS
In=int0^(pi//4) tan^n x\ dx, then lim(nt...

`I_n=int_0^(pi//4) tan^n x\ dx`, then `lim_(ntooo) n\ [I_n + I_(n+2)]` is equal to (i)`1/2` (ii)`1` (iii)`infty` (iv) `0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n = int_0^(pi//4) tan^n x dx , then lim_(n to oo) n [I_n + I_(n -2)] equals :

I_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(n to infty) n[I_(n)+I_(n-2)] equals :

If I_(n)=int_(0)^(pi//4) tan^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1)) equals

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

If I_n=int_0^(pi/4) tan^nx then lim_(nrarroo)n(I_n+I_(n-2)) equals (A) 1/2 (B) 1 (C) oo (D) 0