Home
Class 10
MATHS
36*(a)/(ax-1)+(b)/(bx-1)=a+b,x...

36*(a)/(ax-1)+(b)/(bx-1)=a+b,x

Promotional Banner

Similar Questions

Explore conceptually related problems

(a)/(ax-1)+(b)/(bx-1)=a+b,x!=(1)/(a),(1)/(b)

Solve for x:(a)/(ax-1)+(b)/(bx-1)=a+b;x!=(1)/(a),(1)/(b)

Solve : (a)/(ax-1)+(b)/(bx-1)=a+b , where a+b ne 0, ab ne 0 .

Solve each of the following quadratic equations: (a)/((ax-1))+(b)/((bx-1))=(a+b),xne(1)/(a),(1)/(b)

Solve for x: a/(ax-1)+b/(bx-1)=a+b; x!= 1/a, 1/b

Solve: a/(ax-1)+b/(bx-1)=a+b (x!=1/a,1/b) .

if the roots of the equation (x-a)/(ax-1)=(x-b)/(bx+1) are reciprocal to each other.then a.a=1 b.b=2 c.a=2b d.b=0

If f((ax+b)/(x-a))=x, then f^(-1)(x)= (a) x (b) (bx+a)/(x-b)( c) f(x)

If f(x)=(ax-b)/(bx-a) , then find the value of f(1/x) .

If the coefficient of x^8 in (ax^2 + (1)/(bx))^13 is equal to the coefficient of x^(-8) in (ax - (1)/(bx^2))^13 , then a and b will satisfy the relation :