Home
Class 9
MATHS
(cotin)(e^(x)+e^(-x))/(e^(x)-e^(-x))...

(cotin)(e^(x)+e^(-x))/(e^(x)-e^(-x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the functions (e^(x)-e^(-x))/(e^(x)+e^(-x))

Differentiate (e^(x)+e^(-x))/(e^(x)-e^(-x))

"(int((e^(x)+e^(-x))+(e^(x)-e^(-x))sin x)/(1+cos x))dx=

Differentiate (e^(x)+e^(-x))/(e^(x)-e^(-x)) with respect to x:

int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx=

int(e^x+e^(-x))/(e^x-e^(-x))dx

If int (e^(x)-e^(-x))/(e^(2x)+e^(-2x))dx=A ln |(e^(x)+e^(-x)+B)/(e^(x)+e^(-x)-B)|+c then AB=

Evaluate int((e^(x)-e^(-x))/(e^(x)+e^(-x)))dx and the value is (A)log|e^(x)+e^(-x)|(B)log|e^(x)+e^(-x)|+k(C)log|e^(x)-e^(-x)|+k(D) none of these

f(x) = (e^(x)-e^(-x))/(e^(x)+e^(-x))+2 . The inverse of f(x) is ........

If f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2 , then the value of f^(-1)(x) is -