Home
Class 12
MATHS
If y="cosec"^(-1)x ,\ \ x >1 , then show...

If `y="cosec"^(-1)x ,\ \ x >1` , then show that `x(x^2-1)(d^2y)/(dx^2)+(2x^2-1)(dy)/(dx)=0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = cosec^-1x,x>1 , then show that : x(x^2-1)(d^2y)/(dx^2) + (2x^2-1)(dy)/(dx) = 0

If y=csc^(-1)x,x>1, then show that x(x^(2)-1)(d^(2)y)/(dx^(2))+(2x^(2)-1)(dy)/(dx)=0

If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=tan^(-1)x , show that (1+x^2)(d^2y)/(dx^2)+2x(dy)/(dx)=0 .

If y = tan^(-1)x show that (1+x^2)(d^2y)/(dx^2) + 2x(dy)/(dx) = 0

If y=e^(asin^(-1)x)\ ,\ -1\ lt=x\ lt=1, then show that (1-x^2)\ (d^2\ y)/(dx^2)-\ x(dy)/(dx)-\ a^2y=0

If y=tan^(-1)x , then show that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=sin^(-1)x , show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y = sin^-1x , then show that (1-x^2)(d^2y)/(dx^2)- x dy/dx = 0

y= sin ^(-1)x show that (1-x^2) (d^2 y)/(dx^2) -x (dy)/(dx) =0