Home
Class 8
MATHS
[" Q-12) The value of the determinant "]...

[" Q-12) The value of the determinant "],[[1,1,1],[^mC_(1),^m+1C_(1),^m+2C_(1)],[m_(C_(2)),^m+1C_(2),^m+2C_(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

The value of the determinant |{:(1,,1,,1),(.^(m)C_(1),,.^(m+1)C_(1),,.^(m+2)C_(1)),(.^(m)C_(2),,.^(m+1)C_(2),,.^(m+2)C_(2)):}| is equal to

|{:(1,1,1),(m_(C1),m+1_(C1),m+2_(C1)),(m_(C2),m+1_(C2),m+2_(C2)):}|=

The value of the determinant : |(1,1,1),(""^mC_1,""^(m+1)C_1,""^(m+2)C_1),(""^mC_2,""^(m+1)C_2,""^(m+2)C_2)| is equal to :

If m in N and m>=2, prove that: det[[1,1m_(C_(1)),m+1_(C_(1)),m+2_(C_(1))m_(C_(2)),m+1_(C_(2)),m+2_(C_(2))]]=1

If m in N and m>=2 prove that: |111^(m)C_(1)^(m+1)C_(1)^(m+2)C_(1)^(m)C_(2)^(m+1)C_(2)^(m+2)C_(2)|=1

The value of determinant |[ma,m^(3)+a^(3),1],[mb,m^(3)+b^(3),1],[mc,m^(3)+c^(3),1]| is

If minR and mgt=2 then prove that |[1,1,1] , [C(m,1), C(m+1,1), c(m+2,1)] , [C(m,2), C(m+1,2), C(m+2,2)]|=1