Home
Class 12
MATHS
A library has a copies of one book, b...

A library has `a` copies of one book, `b` copies each of two books, `c` copies each of three books, a single copy of `d` books. The total number of ways in which these books can be arranged in a shelf is equal to a. `((a+2b+3c+d)!)/(a !(b !)^2(c !)^3)` b. `((a+2b+3c+d)!)/(a !(2b !)^(c !)^3)` c. `((a+b+3c+d)!)/((c !)^3)` d. `((a+2b+3c+d)!)/(a !(2b !)^(c !)^)`

Promotional Banner

Similar Questions

Explore conceptually related problems

A library has a copies of one book, b copies each of two books, c copies each of three books, a single copy of d books. The total number of ways in which these books can be arranged in a shelf is equal to a. ((a+2b+3c+d)!)/(a !(b !)^2(c !)^3) b. ((a+2b+3c+d)!)/(a !(2b !)^2(c !)^3) c. ((a+b+3c+d)!)/((c !)^3) d. ((a+2b+3c+d)!)/(a !(2b !) (c !)^3)

A library has a copies of one Book, b copies of each of two books, c copies of each of three books, and single copies of d books. The total number of ways in which these books can be distributed is

A library has 6 copies of one book,4 copies of each of two books, 6 copies of each of three books and single copies of 8 books. The number of arrangements of all the books is

If you have 5 copies of one book,4 copies of each of two books,6 copies each of three books and single copy of 8 books you may arrange it in

There are 3 copies each of 4 different books. The number of ways in which they can be arranged in a shelf is

There are 3 copies each of 4 different books. The number of ways they can be arranged in a shelf is

A library has 5 copies of one books 4 cpies each of two books , 6 copies each of three books and 1 copy each of eight books . In how many ways can all the books be arranged ?

There are 3 copies of each of 4 different books . The number of ways that they can be arranged in a shelf is