Home
Class 10
MATHS
" (iv) If "y=x log((x)/(a+bx))*" prove t...

" (iv) If "y=x log((x)/(a+bx))*" prove that "x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y =x log (x/(a+bx)) then prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2 .

If y=xlog(x/(a+bx)) , then prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If y=x log((x)/(a+bx)) then x^(2)(d^(2)y)/(dx^(2))=(x((dy)/(dx))-y)^(m) where

(a+bx)e^((y)/(x))=x, Prove that x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)

If y=x log{(x)/((a+bx))], then show that x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)

(a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=x ln((ax)^(-1)+a^(-1)) prove that x(x+1)(d^(2)y)/(dx^(2))+(dy)/(dx)=y=1

If y=xlog (x/(a+bx)) , prove that x^3(d^2y)/(dx^2)=(y-xdy/dx)^2 .