Home
Class 12
MATHS
" If "f(x)=|[a,-1,0],[ax,a,-1],[ax^(2),a...

" If "f(x)=|[a,-1,0],[ax,a,-1],[ax^(2),ax,a]|," then "f(2x)-f(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|(a,-1,0),(ax,a,-1),(ax^(2),ax,a)| then f(3x)-f(2x)=

If f(x)=det[[a,-1,0ax,a,-1ax^(2),ax,a]], then f(2x)-f(x) is divisible by (a) a(b)b(c)c,d,e(d) none of these

If f(x)=|(a,-1,0), (ax,1,-1), (ax^2,ax,9)|, then f(2x)-f(x) equals

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

If f(x)=|{:(a,-1,0),(ax,a,-1),(ax^2,ax,a):}| then using properties of determinants, find the value of f(2x)-f(x)

If f(x) = {:|(a,-1,0),(ax,a,-1),(ax^2,ax,a)| , using properties of determinants, find the value of f(2x)-f(x)

If f(x)=x^(2)-ax , then f(a)=