Home
Class 12
MATHS
For x1,x2, y1, y2 in R, if 0<x1 <x2, y...

For `x_1,x_2, y_1, y_2 in R`, if 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_(1),x_(2),y_(1),y_(2)in R if ^(@)0

Find the 2xx2 mtrix X if [[x_1,x_2], [y_1,y_2]]-[[2,0],[0,2]]=[[3,5],[1,2]] determine x_1,x_2,y_1,y_2 .

IF [[x_1,x_2],[y_1,y_2]]-[[2,3],[0,1]]=[[3,5],[1,2]] then determine x_1,x_2,y_1,y_2 .

The total number of matrices A = [{:(0, 2y, 1), (2x, y, -1), (2x, -y, 1):}] (x, y in R, x ne y) for which A^(T)A = 3I_(3) is

If the circle x^2 + y^2 = a^2 intersects the hyperbola xy=c^2 in four points P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3), S(x_4, y_4) , then : (A) x_1 + x_2 + x_3 + x_4 = 0 (B) y_1 + y_2 + y_3 + y_4 = 0 (C) x_1 x_2 x_3 x_4= c^4 (D) y_1 y_2 y_3 y_4 = c^4

Prove that the general equation of circles cutting the circles x^2 + y^2 + 2g_r x + 2f_r y+c_r = 0, r= 1, 2 orthogonally is : |(x^2+y^2,-x,-y),(c_1,g_1,f_1),(c_2,g_2,f_2)|+k|(-x, -y, 1), (g_1, f_1, 1), (g_2, f_2, 1)| =0

If the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) be collinear, show that: (y_2 - y_3)/(x_2 x_3) + (y_3 - y_1)/(x_3 x_2) + (y_1 - y_2)/(x_1 x_2) = 0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0