Home
Class 12
MATHS
The conjugate of x+2barz is (i) 2barz+z...

The conjugate of `x+2barz` is (i) `2barz+z` (ii)`barz+2z` (iii) `barz-2z` (iv) `barz-z`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of z barz is……….

Conjugate of a complex no and its properties. If z, z_1, z_2 are complex no.; then :- (i) bar(barz)=z (ii)z+barz=2Re(z)(iii)z-barz=2i Im(z) (iv)z=barz hArr z is purely real (v) z+barz=0implies z is purely imaginary (vi)zbarz=[Re(z)]^2+[Im(z)]^2

Solve: z +2barz=ibarz

The value of (z+3) (barz+3) is equal to (i) |z +3|^(2) (ii) |z-3| (iii) z^(2)+3 (iv) none of these

Which of the following is (are) correct? (A) bar(z_1-z_2)-a(barz_1-barz_2)=0 (B) bar(z_1-z_2)+a(barz_1-barz_2)=0 (C) bar(z_1-z_2)+a(barz_1-barz_2)=-b (D) bar(z_1-z_2)+a(barz_1-barz_2)=-b

Which of the following is (are) correct? (A) bar(z_1-z_2)-a(barz_1-barz_2)=0 (B) bar(z_1-z_2)+a(barz_1-barz_2)=0 (C) bar(z_1-z_2)+a(barz_1-barz_2)=-b (D) bar(z_1-z_2)+a(barz_1-barz_2)=-b

if z=3 -2i, then verify that (i) z + barz = 2Rez (ii) z - barz = 2ilm z

if z=3 -2i, then verify that (i) z + barz = 2Rez (ii) z - barz = 2ilm z

Prove that equation of perpendicular bisector of line segment joining complex numbers z_(1) and z_(2) is z(barz_(2) - barz_(1)) + barz (z_(2) + z_(1)) + |z_(1)|^(2) -|z_(2)|^(2) =0