Home
Class 12
MATHS
The value of the definite integral in...

The value of the definite integral `int_0^(pi/2)sqrt(tanx)dx` is `sqrt(2)pi` (b) `pi/(sqrt(2))` `2sqrt(2)pi` (d) `pi/(2sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is (a) sqrt(2)pi (b) pi/(sqrt(2)) (c) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_(0)^(bar(2))sqrt(tan x)dx is sqrt(2)pi(b)(pi)/(sqrt(2))2sqrt(2)pi(d)(pi)/(2sqrt(2))

Find the value of the definite integral int_(0)^( pi)|sqrt(2)sin x+2cos x|dx

The value of the definite integral int _(0) ^(2pi) sqrt (1 + sin "" (x)/(2))dx is

The value of the integral sqrt2 int_0^pi sqrt(1-cos2x) dx is ?

The value of the integral int_(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

The value of the integral int_(-pi//2)^(pi//2) sqrt(cos -cos^(2)x)dx is

The value of the integral int_(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

The value of the definite integral I = int_(0)^(pi)xsqrt(1+|cosx|) dx is equal to (A) 2sqrt(2)pi (B) sqrt(2) pi (C) 2 pi (D) 4 pi

int_(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))\ dx