Home
Class 11
MATHS
" Que8.If "y=(log x)/(x)," show that "(d...

" Que8.If "y=(log x)/(x)," show that "(d^(2)y)/(dx^(2))=(2log x-3)/(x^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log x/x show that,[(d^(2)y)/(dx^(2))]_(x=1)=-3

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

If y = log ((x)/(a+bx)) , then x^3 (d^2y)/(dx^2)=

If y=x log{(x)/((a+bx))], then show that x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)

If y=x log x ,then (d^(2)y)/(dx^(2))=

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If y = log (log x), then (d^(2)y)/(dx^(2)) is equal to

If y=x^(3)log((1)/(x)) , prove that (d^(2)y)/(dx^(2))-(2)/(x)(dy)/(dx)+3x=0 .