Home
Class 11
MATHS
" If "A=[[1,3],[0,3]]," then "A^(-1)" is...

" If "A=[[1,3],[0,3]]," then "A^(-1)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[2, 3], [1, 2]], B=[[3, 1], [0, 3]] then B^(-1)A^(-1)=

If A = [[1,-1,3] , [2,1,0] , [3,3,1]] then apply R_1 rarr R_2 and then C_1 rarr C_1 +2C_3 on A

If A^(-1)=[[1,-1, 2],[0, 3,1],[ 0 ,0,-1/3]] , then |A|=-1 b. adj A=[[-1, 1 ,-2],[ 0,-3,-1],[ 0, 0, 1/3]] c. A=[[1, 1/3, 7 ],[0, 1/3, 1],[0 ,0,-3]] d. A =[[1,-1/3,-7],[ 0,-3, 0],[ 0, 0, 1]]

If A^(-1)=[[1,-1, 2],[0, 3,1],[ 0 ,0,-1/3]] , then |A|=-1 b. adj A=[[-1, 1 ,2],[ 0,-3,-1],[ 0, 0, 1/3]] c. A=[[1, 1/3, 7 ],[0, 1/3, 1],[0 ,0,-3]] d. A =[[1,-1/3,-7],[ 0,-3, 0],[ 0, 0, 1]]

If A^(-1)=[[1,-1, 2],[0, 3,1],[ 0 ,0,-1/3]] , then |A|=-1 b. adj A=[[-1, 1 ,2],[ 0,-3,-1],[ 0, 0, 1/3]] c. A=[[1, 1/3, 7 ],[0, 1/3, 1],[0 ,0,-3]] d. A =[[1,-1/3,-7],[ 0,-3, 0],[ 0, 0, 1]]

If A^(-1)=[[1,-1, 2],[0, 3,1],[ 0 ,0,-1/3]] , then |A|=-1 b. adj A=[[-1, 1 ,-2],[ 0,-3,-1],[ 0, 0, 1/3]] c. A=[[1, 1/3, 7 ],[0, 1/3, 1],[0 ,0,-3]] d. A =[[1,-1/3,-7],[ 0,-3, 0],[ 0, 0, 1]]

If A==[[1, -1, 3], [2, 1, 0], [3, 3, 1]] , then first 3R_3 and then C_3 to C_3 +2C_2 on A gives

If A=[[1,2,3],[0,-1,4],[3,1,5]] and B=[[2,-1,0],[1,4,3],[3,0,-2]], verify that (AB)^-1=B^-1A^-1.

If A=[[1,2,3],[2,0,-2]],B=[[1,1,-1],[2,0,3],[3,-1,2]] and C=[[1,3],[0,2],[-1,4]] find A(BC).

If A = [[1,1,-1],[2,0,3],[3,-1,2]], B = [[1,3],[0,2],[-1,4]] and C = [[1,2,3,-4],[2,0,-2,1]] , find A(BC) , (AB)C and show that (AB)C = A(BC)