Home
Class 12
MATHS
The number of ways of choosing triplet (...

The number of ways of choosing triplet `(x , y ,z)` such that `zgtmax{x, y}` and `x ,y ,z in {1,2,.......... n, n+1}` is `(A)` `.^n+1C_3+^(n+2)C_3` `(B)``n(n+1)(2n+1)//6` `(C)``1^2+2^2+..............+n^2` `(D)` `2(.^(n+2)C_3)-(.^(n+1)C_2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of ways of choosing triplet (x,y,z) such that z>max{x,y} and x,y,z in{1,2,.........n,n+1} is (A)*^(n)+1C_(3)+^(n+2)C_(3)(B)n(n+1)(2n+1)/6(C)1^(2)+2^(2)+.............+n^(2)(D)2(.^(n+2)C_(3))-(.^(n+1)C_(2))

The number of ways of choosing triplet (x , y ,z) such that zgeqmax{x, y}a n dx ,y ,z in {1,2, n ,n+1} is a. ^ (n+1)C_3+^(n+2)C_3 b. n(n+1)(2n+1)//6 c. 1^2+2^2+...+n^2 d. 2((^(n+2)C_3))_(-^(n+2))C_2

The number of ways of choosing triplet (x , y ,z) such that zgeqmax{x, y}a n dx ,y ,z in {1,2, n ,n+1} is a. ^n+1C_3+^(n+2)C_3 b. n(n+1)(2n+1)//6 c. 1^2+2^2++n^2 d. 2((^(n+2)C_3))_(-^(n+2))C_2

If (1+x)^n = C_0 + C_1 x+ C_2 x^2 + ….....+ C_n x^n, then C_0+2. C_1 +3. C_2 +….+(n+1) . C_n=

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(1)+2.C_(2)+3.C_(3)+....+n.C_(n)=n.2^(n-1)

If n > 3, then x y C_0-(x-1)(y-1)C_1+(x-2)(y-2)C_2-(x-3)(y-3)C_3+..............+(-1)^n(x-n)(y-n)C_n, equals

If (1+x)^(n)=^(n)C_(0)+^(n)C_(1)x+^(n)C_(2)x^(2)+…+^(n)C_(n)x^(n) , prove that, nC_(1)-2^(n)C_(2)+3^(n)C_(3)-…+(-1)^(n-1).n^(n)C_(n)=0 .

If n>3, then xyC_(0)-(x-1)(y-1)C_(1)+(x-2)(y-2)C_(2)-(x-3)(y-3)C_(3)+............+(-1)^(n)(x-n)(y-n)C_(n) equals

Prove that 1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+. . .....(n+1)terms = 0

If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n) x^(n) Show that C_(1)^(2)+2*C_(2)^(2)+3*C_(3)^(2)....+n*C_(n)^(2)=((2n-1)!)/([(n-1)!]^(2))