Home
Class 12
MATHS
sin^(-1)(5)/(x)+sin^(-1)(12)/(x)=(pi)/(2...

sin^(-1)(5)/(x)+sin^(-1)(12)/(x)=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin^(-1)x +sin^(-1)(1-x) =(pi)/(2) .

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

If sin^(-1)(x)+sin^(-1)(2x)=(pi)/3 then x=

STATEMENT-1: The solution of sin^(-1)6x+sin^(-1)6sqrt(3)x=(pi)/(2) is x=+-(1)/(12) .and STATEMENT -2 As,sin^(-1)x is defined for |x|<=1

Solve the following equations: sin^(-1)(3x)/(5)+sin^(-1)(4x)/(5)=sin^(-1)xsin^(-1)6x+sin^(-1)6sqrt(3)x=(pi)/(2)