Home
Class 11
MATHS
" Prove that "(1-cos A+cos B-cos(A+B))/(...

" Prove that "(1-cos A+cos B-cos(A+B))/(1+cos A-cos B-cos(A+B))=tan(A)/(2)*cot(B)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

In Delta ABC, show that (1-cos A+cos B+cos C)/(1-cos C+cos A+cos B)=tan((A)/(2))cot((C)/(2))

(cos A+cos B)/(cos B-cos A)=cot((A+B)/(2))cot((A-B)/(2))

Prove that: (cos A+cos B)/(cos B-cos A)=cot((A+B)/(2))cot((A-B)/(2))

Prove that: (cos A+cos B)/(cos B-cos A)=cot((A+B)/2)cot((A-B)/2)

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

Prove that : cos (A + B) cos (A - B) = cos^2A-1+ cos^2B .

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Prove that: (sin A-sin B)/(cos A+cos B)=tan((A-B)/2)

Prove that : sin^2 A=cos^2 (A-B)+ cos^2 B-2 cos (A - B) cos A cos B .