Home
Class 11
MATHS
(log x)/(ry-qz)=(log y)/(pz-rx)=(log z)/...

(log x)/(ry-qz)=(log y)/(pz-rx)=(log z)/(qx-py)," show that,"xPy^(q)z^(r)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (logx)/(ry-qz) = (log y)/(pz - rx) = (log z)/(qx - py) , then prove that x^(p) . Y^(q) . Z^(r ) = 1 .

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

If (log x)/(q-r)=(log y)/(r-p)=(log z)/(p-q) prove that x^(q+r)*y^(r+p)*z^(p+q)=x^(p)*y^(q).z^(r)

If ("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y) , then prove that xyz = 1.

If (loga)/(y+z)=(log b)/(z+x)=(log c)/(x+y) show that (b/c )^(x)(c /a)^(y)(a/b)^z=1

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is