Home
Class 12
MATHS
f(x)={[(1)/(e^((1)/(x))-1)," if "x>0],[0...

f(x)={[(1)/(e^((1)/(x))-1)," if "x>0],[0," if "x<=0]quad " at "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Examine the contiunity of the the following functions at indicated points. f(x) = {[1/e^(1/x-1), if x>0],[0,ifxle0]:} at x=0

If f(x)={(1)/(e^((1)/(x))+1),x!=0,0,x=0 then

If f(x)={(x)/(1+e^((1)/(x))) for x!=0,0f or x=0 then the function f(x) is differentiable for

If f(x)={(x)/(e^((1)/(x))+1),x!=0 and 0,x=0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

Examine the continuity of the function f(x) = {((e^((1)/(x)))/(1 + e^((1)/(x)))",","if " x ne 0),(0",","if" x = 0):} at x= 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

Check the continuity of f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0