Home
Class 12
MATHS
(d)/(dx)[cot^(-1)((1-x)/(1+x))]=...

(d)/(dx)[cot^(-1)((1-x)/(1+x))]=

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (d)/(dx)cot^(-1)((1-x^(2))/(2x))

(d)/(dx)[cot^(-1)sqrt((x)/(1-x))]=

If (d)/(dx)[cot^(-1)(x+1)]+(d)/(dx)(tan^(-1)x)=(d)/(dx)(tan^(-1)u)," then "u=

Differentiate w.r.t. x : (i)cot^(-1)((1)/(x))" "(ii)tan^(-1)((2x)/(1-x^(2)))" "(iii)cot^(-1)((1-x)/(1+x))

(d)/(dx)[cot^-1((1+sqrt(1-x^(2)))/(x))]=

Differentiate the following with respect to x : cos^(-1)(sinx) and cot^(-1)((1-x)/(1+x))

Prove that (d)/(dx)(cot^(-1)x)=(-1)/((1+x^(2))) , where x in R .

Using the formula (d)/(dx)(tan^(-1)x)=(1)/(1+x^(2)) , deduce that (d)/(dx)(cot^(-1)x)=-(1)/(1+x^(2)) .