Home
Class 12
MATHS
If a1, a2, a3 are the roots of z^3 - 3...

If `a_1, a_2, a_3` are the roots of `z^3 - 3z^2 + 3z +7 = 0`, then find the value of `|sum_(i != j) ((a_i-1)/(a_j-1))|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1),z_(2),z_(3) andz_(4) are the roots of the equation z^(4)=1, the value of sum_(i=1)^(4)zi^(3) is

If a_1,a_2,a_3,a_4 are the coefficients of 2nd, 3rd, 4th and 5th terms of (1+x)^n respectively then (a_1)/(a_1+a_2) , (a_2)/(a_2+a_3),(a_3)/(a_3+a_4) are in

Three distinct numbers a_1 , a_2, a_3 are in increasing G.P. a_1^2 + a_2^2 + a_3^2 = 364 and a_1 + a_2 + a_3 = 26 then the value of a_10 if a_n is the n^(th) term of the given G.P. is:

The average of a_1, a_2, a_3, a_4 is 16. Half of the sum of a_2, a_3, a_4 is 23. What is the value of a_1

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot