Home
Class 11
MATHS
(sin^(2)A-sin^(2)B)/(in A cos A-sin B co...

(sin^(2)A-sin^(2)B)/(in A cos A-sin B cos B)=

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin^(2)A-sin^(2)B)/(sin A cos A-sin B cos B) is equal to (a) sin A cos A-sin B cos Btan(A-B)(b)tan(A+B)cot(A-B)(d)cot(A+B)

(sin ^ (2) A-sin ^ (2) B) / (sin A cos A-sin B cos B) = tan (A + B)

(sin ^(2) A - sin ^(2) B)/( sin A cos A - sin B cos B) is equal to

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

Prove that (1 + sin A) / (cos A) + (cos B) / (1-sin B) = (2sin A-2sin B) / (sin (AB) + cos A-cos B)

Show that (1+ sin A)/(cosA)+( cos B)/(1- sin B)=(2 (sin A- sin B))/(sin (A-B)+ cos A-cos B)

Show that (1+sin A)/(cos A)+(cos B)/(1-sin B)=(2sin A-2sin B)/(sin(A-B)+cos A-cos B)

sin^(2) A cos^(2)B + cos ^(2) A sin^(2) B + sin^(2) A sin^(2) B+ cos^(2) A cos^(2) B=

If A and B are complementary angles, prove that : (sin A + sin B)/ (sin A - sin B) + (cos B - cos A)/ (cos B + cos A) = (2)/(2 sin^(2) A - 1)

Prove that: sin^2B=sin^2A+sin^2(A-B)-2sin A cos B sin(A-B)