Home
Class 11
MATHS
Using binomial theorem, expand {(x+y)^5+...

Using binomial theorem, expand `{(x+y)^5+(x-y)^5}dot` and hence find the value of `{(sqrt(2)+1)^5+(sqrt(2)-1)^5}dot`

Text Solution

AI Generated Solution

To solve the problem, we will use the Binomial Theorem to expand \((x+y)^5 + (x-y)^5\) and then substitute the values to find \((\sqrt{2}+1)^5 + (\sqrt{2}-1)^5\). ### Step 1: Expand \((x+y)^5\) using the Binomial Theorem The Binomial Theorem states that: \[ (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] For \((x+y)^5\): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ARITHMETIC PROGRESSIONS

    RD SHARMA|Exercise Solved Examples And Exercises|248 Videos
  • BRIEF REVIEW OF CARTESIAN SYSTEM OF RECTANGULAR COORDINATES

    RD SHARMA|Exercise Solved Examples And Exercises|75 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem,expand (x+(1)/(y))^(11)

Using binomial theorem expand (x^(2)+(1)/(x^(2)))^(4)

Knowledge Check

  • Using binomial theorem, expand {(x+y)^5+(x-y)^5} and hence find the value of {(sqrt2+1)^5+(sqrt2-1)^5}

    A
    `58sqrt2`
    B
    `85sqrt2`
    C
    `29sqrt2`
    D
    `75sqrt2`
  • Similar Questions

    Explore conceptually related problems

    Expand (x+y)^(4)-(x-y)^(4) . Hence find the value of (3+sqrt(5))^(4) -(3-sqrt(5))^(4) .

    Using binomial theorems,find the value of 99^(5)

    Using binomial theorem, expand each of the following: (x-1/y)^(5)

    Expand using binomial theorem (4x - 5y)^5 = ………..

    Using binomial theorem, expand each of the following: (3x+2y)^(5)

    Using binomial theorem, expand each of the following: (1-2x)^(5)

    Find the value of x for which 5^(2x)-:5^(-3)=5^5dot