Home
Class 12
MATHS
lim(x rarr0)(1)/(x^(3))int(0)^(x)(t ln(1...

lim_(x rarr0)(1)/(x^(3))int_(0)^(x)(t ln(1+t))/(t^(4)+4)dt

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(1)/(x^(3))int_(0)^(x)(t ln(1+t))/(t^(4)+4)backslash dt

Find the value of Lim_(x rarr 0) (1)/(x^(3)) int_(0)^(x) (t(ln (1+t)))/(t^(4) + 4)dt

The values of lim_(x rarr 0) (1)/(x^(3)) int_(0)^(x) (t In (1 + t))/(t^(4) + 4)dt is :

lim_(x rarr0)(1)/(x^(2))int_(0)^(x)(tdt)/(t^(4)+1) is equal to

The value of lim_(x rarr0)int_(0)^(x)(t ln(1+t))/(t^(4)+4)dt

The value of (lim_(x rarr0)(1)/(x^(6))int_(0)^(x^(2))sin(t^(2))dt) is equal to

lim_(x rarr0)((1)/(x^(5))int_(0)^(x)e^(-t^(2))dt-(1)/(x^(4))+(1)/(3x^(2)))

The value of lim_(x rarr0)cos ec^(4)x int_(0)^(x^(2))(ln(1+4t))/(t^(2)+1)dt is

lim_(x rarr0)((1+x)^(4)-1)/(x)