Home
Class 12
MATHS
" 11) If "y=log(x+sqrt(x^(2)+1))," prove...

" 11) If "y=log(x+sqrt(x^(2)+1))," prove that "(x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log[x+sqrt(x^(2)+1)] , then prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0 .

If y=log(x+sqrt(1+x^(2))), then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log{x+sqrt(x^(2)+a^(2))}, prove that: (x^(2)+a^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log[x+sqrt(x^(2)+a^(2))], show that ((x^(2)+a^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log{x+ sqrt( x^2+a^2 )} , prove that: (x^2+a^2)(d^2y)/(dx^2)+x(dy)/(dx)=0 .

(i) If y^(1//m) + y^(-1//m) = 2x , then prove that (x^(2)-1) (d^(2)y)/(dx^(2)) + x (dy)/(dx) - m^(2)y =0 (ii) If y = ln (x + sqrt(1+x^(2))) , then prove that (1+x^(2)) (d^(2)y)/(dx^(2)) + x (dy)/(dx)=0

(i) If y^(1//m) + y^(-1//m) = 2x then prove that (x^(2)-1) (d^(2)y)/(dx^(2)) + x (dy)/(dx) - m^(2)y =0 (ii) If y = ln (x + sqrt(1+x^(2)) , then prove that (1+x^(2)) (d^(2)y)/(dx^(2)) + x (dy)/(dx)=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sqrt(x+1)-sqrt(x-1) ,prove that (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-(y)/(4)=0