Home
Class 12
MATHS
int(dx)/(1+3sin^2x)....

`int(dx)/(1+3sin^2x).`

Promotional Banner

Similar Questions

Explore conceptually related problems

int (dx)/(1+3 sin^(2)x)dx is :

Evaluate : (i) int(dx)/((1+3sin^(2)x)) (ii) int(dx)/((3+2cos^(2)x))

Let I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(-1)(2f(x))+C (where, C is the constant of integration). If f((pi)/(4))=1 , then the fundamental period of y=f(x) is

Let I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(-1)(2f(x))+C (where, C is the constant of integration). If f((pi)/(4))=1 , then the fundamental period of y=f(x) is

int (sin 2x)/(1+sin^2x)dx=

int(1)/(1+3 sin ^(2)x)dx is equal to

int(1)/(1+3 sin ^(2)x)dx is equal to

Evaluate: int1/(1+3sin^2x)\ dx

Evaluate: int1/(1+3sin^2x)\ dx

int(cosx)/(3sin^2x-4sinx+1)dx=