Home
Class 12
MATHS
Find the value of i^n+i^(n+1)+i^(n+2)+i^...

Find the value of `i^n+i^(n+1)+i^(n+2)+i^(n+3)` for all `n in Ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of : (1+i)^n, n inN

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n inN

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 , for all n in N .

Find the value of 2^n/((1+i)^(2n))+(1+i)^(2n)/(2^n)

1 + i^(2n) + i^(4n) + i^(6n)

Show that: {i^(19)+(1/i)^(25)}^2=-4 (ii) {i^(17)-(1/i)^(34)}^2=2i (iii) {i^(18)+(1/i)^(24)}^3=0 (iv) i^n+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n in Ndot

Value of i^n+i^(n+1)+i^(n+2)+i^(n+3) (where i=sqrt-1 )