Home
Class 12
MATHS
if cos y= xcos(a+y) , prove that dy/dx= ...

if cos y= xcos(a+y) , prove that `dy/dx= cos^2(a+y) / sin a`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos y=x cos (a+y) prove that (dy/dx)=(cos ^2(a+y))/sina

If cos y = x cos(a+y) then prove that dy/dx = (cos^2(a+y))/sin a

If x cos (a + y)=cos y then prove that [dy/dx = cos^2 (a+ y) /sin a] . Hence show that [sin a (d^2y /dx^2) + sin 2(a+ y) dy/dx =0] .

If sin y = x cos (a + y) , prove that (dy)/(dx) = (cos^2 (a + y))/(cos a)

If x cos (a+y) = cos y, then prove that dy/dx = (cos^2(a+y))/(sina) Hence, show that sina(d^2y)/(dx^2)+ sin 2(a+y) (dy)/(dx) = 0

If cosy = xcos(a+y) , with cos a ne +-1 , prove that dy/dx = (cos^2(a+y))/sina

If cos y = x cos (a+y) Then prove that (dy)/(dx) = (cos^(2) (a+y))/(sin a ) , cosa ne +-1

If cosy=x cos(a+y)," prove that " (dy)/(dx) =(cos^(2)(a+y))/(sin a) , where a ne 0 is a constant .

If xsin(a+y)+sina cos(a+y)=0 , prove that (dy)/(dx)=sin^2(a+y)/sina