Home
Class 11
MATHS
21^(7)+2+3^(3)+...+n^(3)=((n(n+1))/(2))^...

21^(7)+2+3^(3)+...+n^(3)=((n(n+1))/(2))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N

Using mathematical induction, prove that (1)/(1.3.5) + (2)/(3.5.7) +….+(n)/((2n-1)( 2n+1) ( 2n+3)) =( n(n+1))/( 2(2n+1) (2n+3))

Prove that (1^(2))/(3).^(n)C_(1)+(1^(2) + 2^(2))/(7).^(n)C_(2)+(1^(2)+2^(2)+3^(2))/(7).^(n)C_(3)+"...." +(1^(2)+2^(3)+"....."+n^(2))/(2n+1).^(n)C_(n) = (n(n+3))/(6)2^(n-2) .

Prove by PMI that 1.2+2.3+3.4+....+n(n+1)=((n)(n+1)(n+2))/(3),AA n in N

Prove that 1*2+2*3+3*4+.....+n*(n+1)=(n(n+1)(n+2))/(3)

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

If A is skew-symmetric matrix of order 2 and B=[[1,42,9]] and c[[9,-4-2,1]]A^(3)BC+A^(5)B^(2)C^(2)+A^(7)B^(3)C^(3)+....+A^(2n+1)B^(n)C^(n) where n in N is

If (1^(2)-a_(1))+(2^(2)-a_(2))+(3^(2)-a_(3))+…..+(n^(2)-a_(n))=(1)/(3)n(n^(2)-1) , then the value of a_(7) is