Home
Class 11
MATHS
The expression (sin 22^0cos8^0+cos 158^0...

The expression `(sin 22^0cos8^0+cos 158^0cos98^0)/(sin 23^0cos7^0+cos 157^0cos 97^0\ )` when simplified reduces to- a.`1` b. `-1` c.`2` d. none

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (sin 22^(@)cos 8^(@)+cos 158^(@) cos 98^(@))/(sin 23^(@) cos 7^(@)+cos 157^(@) cos 97^(@)) when simplified reduces to

The expression (sin 22^(@)cos 8^(@)+cos 158^(@) cos 98^(@))/(sin 23^(@) cos 7^(@)+cos 157^(@) cos 97^(@)) when simplified reduces to

(2cos 40^0-cos 20^0)/(sin 20^0)=

The value of (sin22^(@)cos8^(@)+cos158^(@)cos98^(@))/(sin23^(@)cos7^(@)+cos157^(@)cos97^(@))

The value of (sin22^(@)cos8^(@)+cos158^(@)cos98^(@))/(sin23^(@)cos7^(@)+cos157^(@)cos97^(@))

The value of (sin22^(@)cos8^(@)+cos158^(@)cos98^(@))/(sin23^(@)cos7^(@)+cos157^(@)cos97^(@))

1+cos 56^0 + cos 58^0 - cos 66^0=4cos 28^0 cos 29^0 sin 33^0 .

1+cos 56^0 + cos 58^0 - cos 66^0=4cos 28^0 cos 29^0 sin 33^0 .

Prove that: cos510^0cos 330^0+sin 390^0cos 120^0=-1.

Prove that: sin 23^0+sin 37^0=cos7^0