Home
Class 12
MATHS
Let g(x) = (x-1)^n/(log(cos^m(x-1))) ; 0...

Let `g(x) = (x-1)^n/(log(cos^m(x-1))) ; 0 lt x lt 2` ,m and n and let p be the left hand derivative of `|x - 1|` at `x = 1`. If `lim_(x->1) g(x) =p`, then (A) `n=1,m=1` (B) `n=1,m=-1` (C) `n=2,m=2` (D) `n>2,m=n`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2,m and n are intgers, m!=0,ngt0 , and let p be the left hand derivative of |x-1| at x=1 . If lim_(xto1^(+))g(x)=p , then :

Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0, n gt0 and. If lim_(xrarr1+) g(x)=-1 , then

If lim_(x rarr0)(1-cos(1-cos((x)/(2))))/(2^(m)x^(n)) is equal to the left hand derivative of f(x)=e^(-(|x|)) at x=0, then the value of |n+m| is

If f(x) = log ((m(x))/(n(x))), m(1) = n(1) = 1 and m'(1) = n'(1) = 2, " then" f'(1) is equal to

int_(0)^(1)x^((m-1))(1-x)^((n-1))dx is equal to where m,n in N

lim_ (x rarr oo) ((1) / (n + m) + (1) / (n + 2m) + ... + (1) / (n + nm))

(lim)_(x->0)(1-cos^n(1-cosx)/(tan^m x))=1 . Then ( n - m ) is :

If m, n in N , then l_(m n) = int_(0)^(1) x^(m) (1-x)^(n) dx is equal to