Home
Class 12
MATHS
If y=ae^(mx)+bcosmx then prove that (d^2...

If `y=ae^(mx)+bcosmx` then prove that `(d^2y)/(dx^2)+m^2y=2am^2e^(mx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ae^(mx)+bcosmx , prove that, (d^2y)/(dx^2)+m^2y=2am^2e^(mx)

If y=A sin mx+B cos mx, then prove that (d^(2)y)/(dx^(2))+m^(2)y=0

Find the second order derivative of the following functions If y = ae^(mx) + be^(-mx) , prove that (d^2y)/(dx^2) - m^2y = 0

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,

If y = ae^(mx) + be^-(mx) , then (d^2y)/(dx^2) =

If y= Ae^(mx) + Be^(-mx) , show that (d^2y)/dx^2-m^2y=0 .

if y=Ae^(mx)+Be^(nx) then prove that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

If y=Ae^(mx)+Be^(nx) , prove that (d^(2)y)/(dx^(2)) -(m+n) (dy)/(dx) + mny=0 .

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .